Some Common Misconceptions in AP Chemistry:

	Misconception	Correct Thinking
1.	Volumes of solutions are	IMFs can bring particles together, and the total volume before and after mixing
	additive upon mixing	can change. Usually and assumption is made: "the volume before and after
		mixing are the same."
2.	The reactant with less	Moles, not mass, determine the limiting reactant. Thinking in terms of "mole of
	mass always limits the rxn.	reaction" can help here.
3.	All reactants make	High activation energy, limiting reactant, positive ΔG , or positive ΔH may
	products when mixed.	contribute to slow or negligible conversion to products.
4.	Breaking bonds releases	Separating bonded atoms always requires energy. Forming bonds always
	energy (as in ATP).	releases energy. Middle school texts often refer to chemical bonds as "stored
		energy," and the ATPADP phrasing in Biology can support the misconception.
5.	All systems/reactions that	Warmth means that energy flows from an object to the hand. Ice freezing
	feel warm are exothermic.	would feel cold, but it is an exothermic process. Define system and
		surroundings before making claims about endo and exothermic.
6.	Heat and temperature are	They are related, but heat is an energy transfer, temperature is a measure of
	the same.	the average kinetic energy of particles. Heat is a quantity and temperature is a
		degree of hotness. There is a Eureka video on heat and temperature that is
		available on YouTube, and it explains this well.
7.	Radiation is always	Radiation exposure is about intensity, energy, and amount. Low energy
	dangerous.	radiation like IR is not dangerous, but higher energy light such as X-ray or
		gamma are incredibly harmful. Connecting the energy of light to what it can do
		to chemical bonds and electrons can illustrate this (IR stretches/vibrates
		covalent bonds, Visible can promote electrons, UV can ionize some valence
		electrons, and X-ray and ionize any electron from an atom).
8.	The s orbital is closer the	The average radial probability of the s cloud is actually further out than the p
	nucleus than the porbitals	clouds. However, the s cloud has greater penetrating ability to the nucleus, so
	in an energy level (and	It can get to a state of lower potential energy (nence why s is more likely to be
	from the puclous)	the p electrons, but the inper principal energy levels to shield outer energy
٥	All molecules in a gas at a	Temperature measures average kinetic energy. Some particles move faster
9.	diven temperature have	than others. Maxwell-Boltzmann distribution curves are a good way to show
	the same velocity	that individual particles of a low temperature sample can move faster than
	the same velocity.	individual particles of a high temperature sample, but the average speed will be
		higher at higher temps
10	Particles in gases always	Temperature is a higger factor here than state of matter. Also, o can move
10.	move faster than narticles	slowly in the gas phase. During phase transitions like boiling the fast moving
	in liquids.	particles are much more likely to escape into the gas phase, but there can still
		be slow moving gas particles at any given instant.
11.	Rate laws are determined	Rate laws are determined experimentally. Sometimes rate order will match the
	by the coefficients from a	coefficient in a net equation, and often it will not. Only for elementary steps
	balanced net reaction.	(unimolecular, bimolecular collisions) does rate order match the coefficient.
12.	Inhibitors slow rxns by	Inhibitors are often competitors to reactant molecules, decreasing effective
	raising activation energy.	concentration, thus slowing rate. They are not "anti-catalysts."
13.	A catalyst will make more	Catalysts improve efficiency by either by partially breaking bonds a surface, or
	product.	by bringing together molecules with the proper orientation, reducing the
		unsuccessful collisions with incorrect orientation.
14.	Stirring increases the	Stirring can affect surface area exposed if working with a solid reactant, but its
	energy of collisions by	effect on temperature is negligible. "What If?" by xkcd did a good write-up on
	adding kinetic energy.	it: https://what-if.xkcd.com/71/

15. When a system reaches equilibrium, all chemical	Rates become equal at equilibrium, but products convert to reactants just as reactants continue to convert to products. It is a dynamic process.
changes stop.	
 Systems have a K=1 at equilibrium; similarly, all species are at the same concentration when equilibrium is achieved. 	It's rare for K to equal 1, and there are many concentrations that can allow for equilibrium. Rates must match, so many sets of concentrations can achieve the equal rates.
17. Catalysts can change	Catalysts do not "shift" position; they achieve equilibrium faster. While they do
equilibrium position.	reduce activation energy, they reduce it for both forward and reverse reactions.
 Reactions always go to completion. 	Many reactions reach equilibrium, especially in aqueous solutions.
 The equilibrium constant, K, never changes. 	K is dependent on temperature, and for an endothermic reaction, K becomes larger at higher temperature, and vice versa. K can be related to ΔG to determine the effects of temperature on equilibrium position. As temp is
	changed, the current conditions (Q) no longer match K, so the system will adjust to move towards the new K at the different temperature.
20. Strong and concentrated	Strong = 100% ionized.
21. All neutralization reactions produce a neutral solution.	Weak acids titrated with strong bases have pH>7. Weak bases titrated with strong acids have pH<7. Weak bases titrated with weak acids (who does this?) would have a pH that will depend on the relative sizes of K_a and K_b for the substances used. Analysis of titration curves can help solidify this point.
22. Only pH values of 1-14	pH can be negative and can go beyond 14 for highly concentrated strong acids
occur.	and bases. For these systems, it's just easier to report "10.0 M HCl has $[H^+] = 10.0M$ " than to say "pH = -1.000."
 The endpoint of a titration and the equivalence point are the same. 	The endpoint is when the indicator changes color. Ideally, the endpoint and equivalence point should be close, so selecting an indicator within on pK_a unit of the final pH of the titration is important. However, if a student consistent overtitrates, the endpoint will have more moles of base added than the equivalence point.
 Exothermic reactions are always thermodynamically favorable; endothermic reactions never are. 	ΔG determines favorability, not just ΔH . Enthalpy, entropy, and temperature must all be considered to determine the thermodynamic favorability of a process.
25. A positive ∆G means the reaction does not occur.	Non-favorable reactions are often coupled to other reactions that have larger, negative values of ΔG . For example, recharging a phone battery uses the highly favorable combustion of carbon-based fuels to make electricity that pushes electrons in the non-favored direction. Photosynthesis is not favored, but energy from the sun and energy transfers within the cell allow it to occur.
26. If ΔG is negative, the reaction will occur quickly.	ΔG indicates favorability, not rate. Rate is about kinetic controls. Rusting of iron has a large, negative ΔG , but the process is (thankfully) slow.
27. Water is a good conductor	The ions dissolved in water are responsible for its conductivity. Pure water has a resistance of 18 MO, which is hugely insulating
28. Oxidation or reduction can	Charge is conserved just like atoms are in chemical reactions. Half-reactions
occur in isolation of the	must be balanced to allow an equal electron transfer between these paired
other process.	processes.
29. Metals want to lose	Ionization energy is endothermic, the losing of electrons is not favorable for
electrons. Nonmetals	metals. It is true that adding electrons to nonmetals is usually enthalpically
want to gain them.	energy Generally bringing particles together releases energy and separating
	particles requires energy (as long as they don't have the same charge).

30. Covalent bonds are	At the boiling point, molecules have enough kinetic energy to overcome the
broken when substances	IMEs that hold them to adjacent molecules. The covalent bonds inside of the
boil.	molecule remain intact. Students need to clearly articulate that hydrogen
	bonding is a force between molecules and avoid vague language like "hydrogen
	bonds are broken " which is unclear if the covalent bonds to bydrogen atoms or
	the hydrogen bonds between molecules are being overcome
21 Dipole-dipole attractions	For small molecules like H_{10} , it is true that the dipole attractions are stronger
31. Dipole-dipole attractions	than the LDEs among molecules, but if comparing molecules of different size
and nyurogen bonding are	than the LDFs among molecules, but in comparing molecules of unreferrent size,
stronger than London	arge molecules often have LDFs that are far greater than dipole-dipole
dispersion forces.	attractions and even H-bonding among smaller molecules. E.g., water bolls at
	100 C, but oil is still a liquid at this temperature. Oil's larger, more polarizable
	electron cloud gives it greater attractions to adjacent molecules that water has
	to adjacent water molecules.
32. London dispersion forces	While molar mass is a convenient number to tabulate to get a concept of the
are stronger because of	size of a molecule, it is the size and shape of the electron cloud, not the
higher molar mass of	molecule's mass, that causes changes in LDFs. Sometimes, two molecules with
molecules.	the same molar mass can have very different boiling points, usually due to a
	greater surface area of the electron cloud allowing for greater polarizability.
	For example, a molecule with the formula of C_6H_6 could be in a long, zigzag
	shape, or it could be a flat hexagonal ring (as in benzene). The boiling point on
	the flat molecule is much higher than that for the zigzag molecule.
33. The entropy of a solution	While mixing usually results in more degrees of freedom, and thus a higher
is always greater than of	entropy, very small ions with high charge density can strongly organize the
the separated	water molecules around them, so solution formation can have a negative
components.	entropy change.
34. Electrons move through	Charged particles must flow through the salt bridge, but the dissolved ions, not
the solution or salt bridge	electrons, are responsible for balancing the charge that is flowing through the
in an electrochemical cell.	wire between the two electrodes.
35. Anodes decrease in mass	While electrons do have mass and do move from the anode generally toward
because electrons are	the wire, the mass loss is due to soluble cations being formed that float away
being lost from the metal	from the electrode into the surrounding solution. Also, one electron does not
and flowing through the	make the entire transit from anode to cathode; they bombard the next electron
wire.	cloud over, pushing electrons on the next atom over in a cascading effect.
36. "Like dissolves like," so	There are attractions between water and oil (LDFs and some very slight dipole-
nonpolar molecules don't	induced dipole attraction). However, the attraction among water molecules is
dissolve in polar solvents	much greater than the energy/entropy payout for mixing with oil. Likewise, oil
like water. Nonpolar	is much more attracted to molecules of its own type (through very significant
molecules do not attract	LDFs), so they stay with the stronger attraction. This can be altered at high
to polar molecules.	temp, and the T Δ S term overcomes the Δ H term, and the interaction becomes
	thermodynamically favored, hence why steam cleaning removes oily residues.
	There is a good <i>J Chem Ed</i> article on this topic.