When Responding to the AP Chemistry Free Response Questions:

Write This	Not That!	Rationale
Generally		
The language used in the question	Other words that may mean the	Make it easy to give you points, and be sure the reader can
when asked to make a choice (ex:	same thing but are likely more	understand what you saying
"increases", "decreases", etc.)	ambiguous (ex: "goes up", "goes	understand what you suying
	down", etc.)	
Answer the specific question first,	Burying the answer in the text of	Make it easy to give you points
then "justify", "explain" etc.	the response	
names of specific elements and	"it"	Ambiguous
compounds, "reactants", "products",		
etc.		
"Species"	"It", "stuff", etc.	Be formal in language
A justification or explanation when it	Only the answer without	Justification/explanation required
is part of the question	supporting it	to earn point
"mass", "volume", etc.	"size"	Be specific
References to specific data or graphs	Make generalizations about the	Required to earn point
when prompted to "explain how the	data without specifically citing	
data" or something similar	provided data or trials	
Net ionic equations only containing	Aqueous ionic compounds in their	Including these is not a net ionic,
species that change	undissociated form, spectator ions	it's a molecular or complete ionic
Particle view diagrams with ions and	Incorrectly oriented dipoles	Drawings must demonstrate
polar molecules orientated in the		understanding of interactions at
correct direction relative to each		the molecular level (ref. 2015 #4)
other		(101. 2013 #4)
An answer with units if "include	An answer without units	If "include units" is written in the
units" is stated in the problem		prompt, a unit is required to earn
Show all work used to derive an	An answer without supporting	full points Work is often what earns some/all
	An answer without supporting work shown	of the points
Answer	Answers with an incorrect number	1 pt traditionally is assessed
Answers expressed to the correct		somewhere in the FR for
number of significant figures	of significant figures	significant figures.
Gases		
Components of the Kinetic	Ideal gas law for molecular level	arguments based on $PV = nRT$ are
Molecular Theory as justifications	justification	at the bulk level and not the
for changes at the molecular level		molecular level (ref. 2013 #5)
Thermodynamics		
Values with correct signs	Values with incorrect signs	Necessary for correct calculations
values with concert signs	values with mediteet signs	and determinations – watch signs
		based on bonds breaking/forming,
		heat flow in calorimetry indicated
		by temperature changes, signs that
		may change in application of Hess' Law, etc.
Kinetics		
Value of k with units	Value of k without units	Units required to earn point
Specific parts of the molecules that	"Collision must occur in the	AP wants more specific answer
must collide in order for the reaction	correct orientation"	
to occur		
A rate law that includes the rate	A rate law without k being	Incomplete rate law if k is not
constant k as part of it	included	included
A rate law based only on reactants	A rate law that includes products	Rate laws are based only on
The fam bused only on reactants	The function and mendeds products	reactants

Equilibrium		
Discussion of Q vs. K	"reduce the stress", or "due to Le Châtelier's Principle"	Preferred AP language
"Proceeds"	"Shift" – if equilibrium has not yet been established (i.e. a precipitate has not yet been formed when evaluating K_{sp})	If equilibrium is not yet established, then it cannot "shift" – rxn will proceed in a certain direction until equilibrium is established
K_{sp} expressions that only contain the ions	K_{sp} expressions that contain or imply a species in the denominator	Solids and liquids are not included in equilibrium expressions
Correct formulas (including charges!) for all species in equilibrium expressions	Substitutions, abbreviations, chargeless ions, other shorthand that may work out in calculations but does not represent the correct species	Equilibrium expressions must be written formally when requested
In K _p expressions: P _{species}	In K _p expressions: [species]	Concentration is not used in K _p , partial pressures are
"x has been assumed to be so small relative to the original concentrations that it can be ignored"	Nothing about why you ignore x to avoid quadratics	Show you understand why you are making the decision
Acids and Bases		
"The pH > 7 because the salt produced in the neutralization behaves as a base: $A^{-} + H_2O \xrightarrow{-} HA$ + OH "	"The pH > 7 because it's a battle between weak acid and strong base and strong base wins."	State the actual reason not the memory aid
"The solution is neutral when $[H_3O^+]$ = $[OH^-]$."	"The solution is neutral when pH=7."	True definition of neutral – neutral is only pH of 7 when $K_w = 1.0 \text{ x}$ 10^{-14} (at 298 K)
$K_w = K_a x K_b$ for a conjugate pair	$K_w = K_a \times K_b$ for an unrelated acid/base pair	This equation only holds true for conjugate acid-base pairs
pH = pKa because it is at ½ the equivalence point of a titration of a weak acid with a strong base	pH = pKa	Explains the reason behind this, and shows you understand this is only true at this point
Atomic Structure		
"Effective nuclear charge increases"	"It wants to have a full octet"; "it's close to having a full octet"	State the actual reason not the memory aid
"It has a more polarizable cloud of electrons"	"It has more electrons", "it has more mass", "it has more surface area", "it is bigger", "it has more protons"	This is the shortest way to show the reason – simply mentioning "more" of something is probably not enough to demonstrate without further explanation of why that is the case
"period"	"shell" when referring to elements and their location on the Periodic Table	Elements are in a period, electrons are in a shell
Reference reasons for periodic trends (i.e. effective nuclear charge, coulomb's law, polarizability, etc.)	Stating the trend as the reason ("because it is to the left", "because it is further down the periodic table", etc.)	State the actual reason not the memory aid
"Electrons in higher energy levels are farther from the nucleus, resulting in a larger atom/ion."	"More electrons/more energy levels make the atom/ion bigger."	Explanation of reason, not just statement of fact, required for point (Ref 2016 #1)

Bonding and Intermolecular Forces		
"Overcome intermolecular forces"	"break up" a solid/liquid	IMFs should be used to justify
Ion interactions	LDF's when discussing ionic compounds	Ionic compounds have ions with whole charges, which dominate interactions
"Coulombic attraction"	"Opposites attract"	State the actual reason not the memory aid
Describe the process of overcoming intermolecular forces/polarity	"Like dissolves like"	State the actual reason not the memory aid
"Has hydrogen bonds between the molecules"	"Has hydrogen bonds"	Shows that you understand hydrogen bonds are not actually bonds
"ionic compound"	"molecule" when discussing an ionic compound	A molecule is a covalent compound
"ions"	"atoms" when discussing ionic compounds	Ionic compounds contain ions
"atoms"	"ions" when discussing covalent compounds	Covalent compounds do not contain ions
Lewis structures that are complete with necessary lone pairs and/or resonance	Lewis structures that are missing lone pairs and/or resonance (if needed for correct structures)	Lewis structures are incorrect without necessary lone pairs
Identify specific intermolecular forces at play	"stronger intermolecular forces"	Shows your understanding of the chemistry at play
"dissolve" when discussing interactions between molecular substances in solution	"ionize", "dissociate", "bond", "react", "attack", "break up", etc.	Molecular substances do not dissociate into ions, dissolving is not reacting, and otherwise be formal in usage
Electrochemistry		
Loss of mass of electrode is due to atoms of electrode going into solution as ions	Loss of mass of electrode is due to loss of electrons	Electrons have extremely small (negligible in this case) mass (ref. 2014 #3)
Discussion of Q vs. K for changes in cell potential after a change, or qualitative discussion of Nernst Equation	Discussion of Le Châtelier's principle	Preferred AP language (ref. 2014 #3)

Compiled by:

Nora Walsh FJ Reitz High School, Evansville, IN

 Sources:
 Review of Released Free-Response Questions with Samples and Commentary

 Adrian Dingle's Blog Posts on Writing Good Answers (<u>https://www.adriandingleschemistrypages.com/</u>)

 AACT Webinar: Teaching Students How to Better Answer Non-Calculator Problems

 AP Teacher Community

 AP Teachers in the National AP Chemistry Teachers Facebook Group